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The rise velocity and shape of bubbles in pure 
water at high Reynolds number 
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The velocity and shape of rising bubbles, with an equivalent radius of 0.33-1.00 mm, 
in ‘hyper clean’ water, have been experimentally determined. For the small bubbles 
there is perfect agreement with theory, proving that this water can be considered as 
pure (no surfactants). For the larger bubbles there is a small discrepancy due to an 
overestimation in the theory. 

1. Introduction 
In this paper we report on the velocity of rise of slightly deformed bubbles in 

water. These bubbles have Reynolds numbers of O( lo2), Weber numbers of O( 1) and 
can approximately be described as oblate spheroids. Here the Reynolds number and 
the Weber number are defined as Re = 2 U Rlv, and We = 2p U2 Rlo, respectively, 
where v and p denote the kinematic viscosity and density of the liquid, o the surface 
tension, R the equivalent radius of the bubble and U the bubble rise velocity. 

An outstanding contribution to the theory of bubble motion at high Reynolds 
numbers was given by Levich (1949, see also Levich, 1962), who calculated the drag of 
a spherical bubble from the dissipation in the liquid, as given by potential flow theory. 
Moore (1963, 1965), extended this result to higher-order in the Reynolds number 
and included the deformation of the bubbles. Moore calculated the deformation 
of the oblate spheroidal bubble in an approximate way by equating the normal 
force balance only at a few points on the bubble surface. El Sawi (1974) and 
Benjamin (1987) satisfied this boundary condition on the complete bubble surface. 
Miksis, Vanden-Broeck & Keller (1981) calculated the bubble shape by a numerical 
method and allowed for a deviation from the oblate spheroidal shape. In these 
three articles potential theory was used, resulting in bubbles with fore-aft symmetry, 
and no steady axisymmetric bubble shape was found above a Weber number of 
3.2. 

Ryskin & Leal (1984) numerically calculated drag coefficients and bubble shapes as 
a funcion of the Weber number for various Reynolds numbers. For large Reynolds 
numbers and even at small Weber numbers fore-aft symmetry no longer holds, 
resulting in a somewhat different drag coefficient than given by Moore (1965). Owing 
to numerical problems the authors were limited to a maximum Reynolds number of 
200, corresponding to a bubble with R = 0.45 mm in water. 

Extensive experiments were carried out by Haberman & Morton (1954), who 
measured rise velocities as a function of bubble size for various liquids. Saffman 
(1956) and Hartunian & Sears (1957) both report on experiments and theory dealing 
with path instability of a rising bubble. 
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All these authors noticed the influence of surface-active impurities on the rise 
velocity. Water, especially, is very sensitive to such impurities ; even distilled water 
is not perfectly pure, as was found by Aybers & Tapuccu (1969). Yet pure water is 
of importance, because it is a liquid with an extremely low Morton number. This 
Morton number depends on the liquid properties only and is defined as M = g,u4/pa3, 
where g is the acceleration due to gravity. Water at 20°C has a value of 2.4 x lo-". 
In a liquid with a low Morton number, bubbles rising at large Reynolds numbers will 
have reasonably small deformation. These bubbles are essential to test the theories 
mentioned here. 

So the question arises of whether water can be so clean that there is no influence 
of impurities on the rise velocity. This is the subject of this paper. We have measured 
rise velocities and shapes of bubbles in 'hyper clean' water. Our measurements fill 
a gap, noticed by Ryskin & Leal (1984), concerning bubbles with high Reynolds 
and low Weber numbers. Here R was varied between 0.33 and 1.00 mm. For the 
small bubbles there is a perfect agreement with theory, proving that our water can 
be considered as pure (no surfactants). For the larger bubbles there is an increasing 
deviation from theory, which is due to an overestimation of the deformation in the 
theories mentioned. Our measurements of the shapes of the larger bubbles show that 
the bubble no longer exhibits fore-aft symmetry, contrary to what is assumed in the 
theories. 

2. Experimental method 
The experiments were performed in a cubic tank with glass walls of 50 cm length. 

The tank was filled with 'hyper clean' water, produced with a Millipore purification 
system. The quality after purification was: specific resistance 18.2 MSZ cm and less 
than 10 p.p.b. organic particles. The temperature of the water during all experiments 
was 19.6 & 0.2 "C. 

Bubbles were produced very accurately with a specially designed system, described 
in detail by Kok (1993). Bubbles sizes were obtained by measuring the length of the 
air plug in the feed capillary. The equivalent radius was varied between 0.33 and 1.0 
mm, with a relative error between 0.8% for R = 0.33 and 0.3% for R = 1.0 mm. This 
error is caused by a measuring fault in the length of the air plug and the diameter of 
the capillary. 

The motion was recorded with a NAC HSV-1000 high speed video with 500 
frames s-l, loaded with a Fuji S-VHS video tape. Back lighting was provided by two 
stroboscopes with a flash pulse of less than 10 ps. The camera was equiped with a 
Canon Zoom lens f/1.6 16-108 mm with a diaphragm f5.6, a Canon extender 2x and 
a messing extension ring of 17 mm. The images were digitized into 768x512 pixels, 
with 8 bit grey level resolution, by a VFG Variable Scan Framegrabber (Imaging 
Technology Inc.) 

The centre and the shape of the bubble projection were determined with image 
software routines. The bubble contour r ( 0 )  is a periodic function of 0 with period 2n 
and can be written as 

N N 

n= 1 n=l 

A, and B, can be determined with Fourier transform methods. An accurate description 
of the shape could be obtained with a number of modes typically less than 8. Also, 
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by not including higher-order terms, noise, due to the finite resolution of the system, 
is eliminated. The deformation of the bubble, 2, is the ratio between the longer and 
smaller axes. The longer axis can be found from 

L-Ao = r n a x l l z  ( A ,  cosne + B, sinno) . 

Solving this equation gives the angle 8, between the longer and 8 axes. The smaller 
axis is found from 8, + n/2. 

(2.2) I) 
N 

3. Experimental results and discussion 
3.1. Rise velocities 

The measured rise velocities are compared with the velocities determined by the 
expression for the drag coefficient as given by Moore (1965), 

valid for high Reynolds numbers. Here G(2) and H ( 2 )  are functions of the deformation 
x, with G ( x )  given by 

and H ( 2 )  as follows from table 1 in Moore (1965). 

where the approximate relation given by Moore (1965), is used, 
The deformation is found from the relation between the Weber number and x, 

because for x less than 2 there is no noticeable difference with the exact relation of 
Benjamin (1987) and El Sawi (1974). 

The rise velocity of a bubble is not immediately constant, but grows from zero at 
release to its final value. From a force balance it can be shown that this distance 
travelled is at most 0.07 m for bubbles in our experiment. 

In figure 1 the experimentally determined rise velocities are plotted as a function of 
R and compared with the theoretical curve. The bubbles were recorded at a distance 
of 10 to 12 cm from the release point. Rise velocities in this range proved to be 
perfectly stationary and errors are small, at most 0.3 cm s-l. 

In the range R m 0.4 to 0.6 mm there is good agreement between theory and 
experiment. For smaller sizes the measured velocities are somewhat lower than 
theoretical values, because for these bubbles the neglected term in (3.1) gives a small, 
but noticeable, contribution. For a spherical bubble this term is of order Re-5/6. 
For the larger bubbles this contribution is of smaller order than the error caused 
by the uncertainty in the bubble size. Ryskin & Leal (1984) calculations included 
drag coefficients for bubbles with Re = 100 and 200, as a function of the Weber 
number. From their results we find for a bubble with R = 0.36 mm a rise velocity of 
15.7 & 0.2 cm s-l, in good agreement with the experimental velocity of 15.3 f 0.2 
cm s-’. Above R = 0.6 mm the experimental rise velocity is slowly becoming larger 
than the theoretically determined one, but the shapes of the two curves are more or 
less similar. In the next section we discuss this difference in more detail. 
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FIGURE 1. Vertical rise velocity of a bubble in pure water. 

To the best of my knowledge the measured rise velocities are the largest ever 
measured. In particular, the velocity of the small bubbles proves to be larger than in 
previous experiments. Kok (1993) reports a rise velocity of 0.236 m s-l for a bubble 
with R = 0.5 mm. Aybers & Tapuccu (1969) measured rise velocities for different 
bubble sizes as a function of the distance travelled. Their results show a maximum 
rise velocity and after that a decrease with the distance travelled. This decrease 
was relatively large for small bubbles and small for large bubbles, clearly indicating 
the existence of surface-active impurities. The experimental results of Haberman & 
Morton (1954) also show a relatively large difference between the experimentally and 
theoretically determined rise velocity for small bubbles and a small difference for 
large bubbles. Hence distilled water contains a noticeable amount of surface-active 
impurities, which have a larger influence on small bubbles than on larger bubbles. 
This qualitative picture also follows from the theoretical work of He, Maldarelli & 
Dagan (1991) for bubbles in Stokes flow. 

In all our measurements rise velocities were stationary and equal to or larger than 
values predicted by theory, so we conclude that for the bubble sizes in this work the 
'hyper clean' water can be considered as pure (no surfactants). 

3.2. Bubble shapes 
We have mentioned a difference between the theoretical and the experimental rise 
velocity above R = 0.6 mm. By considering in more detail the shape of the bubble 
the cause of this becomes clear. 

The equation for the bubble deformation (3.3) is based on potential flow theory, 
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FIGURE 2. Theoretical and experimental determination of We as a function of x. 

which leads to a fore-aft symmetry and an axial symmetry of the bubble. In 
figure 2 we have plotted the experimental and theoretical Weber number against 
the deformation of the bubble, for R > 0.53 mm. For small bubbles there is a 
reasonable agreement between theory and experiment, but for larger bubbles there 
is an increasing deviation caused by theoretical overestimation of the deformation, 
which is also shown in figure 3. This overestimation of the deformation causes 
the theoretical rise velocity to be lower than observed. If the experimental fit for 
the deformation is used in the theoretical calculation of the rise velocity, it can be 
shown that theory and experiment are in agreement. Note here that for the small 
equivalent bubble radii there is a noticeable difference between the experimentally and 
theoretically determined deformation. However the rise velocities in this range are 
equal. Apparently the overestimation of the deformation cancels with the contribution 
from the neglected term in (3.1). 

We now discuss in more detail the observed bubble shapes, more specifically the 
number of terms in (2.1) necessary for a reasonable description of the bubble contour. 
In figure 4, two different bubble sizes are shown, R = 0.64 and R = 0.91 mm. A 
bubble with R = 0.64 mm can well be described by the first two terms ( n  = 0,2) and 
fore-aft symmetry holds; however for R = 0.91 mm terms up to n = 8 are required 
and this contour shows a deviation from fore-aft symmetry. This deviation starts at 
R = 0.6 mm and grows with increasing bubble size. At the point where agreement 
between theory and experiment in figure 1 is lost ( R  = 0.6 mm), fore-aft symmetry 
no longer holds as well. 

When fore-aft symmetry is lost the front of the bubble becomes flatter than the 
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FIGURE 3. Theoretical and experimental determination of x as a function of the equivalent 

bubble radius. 

rear (figure 4 4 ,  in qualitative agreement with the numerical results of Ryskin & Leal 
(1984). They show this to be caused by a standing eddy behind the bubble. Our 
experimental bubble shape gives indirect support for this standing eddy, but no direct 
comparison can be made, because here Reynolds numbers are larger than studied by 
Ryskin & Leal. 

3.3. Path instability 
At R = 0.91 mm and an associated Weber number of 3.3 a path instability occurs: 
i.e. the bubble starts to zigzag. The cause of this path instability is not yet clear. 
From the work of Ryskin & Leal (1984) and Leal (1989) it is at the moment believed 
to be due to shedding of vortices. For this to happen a standing eddy must exist 
behind the bubble. The authors showed that this eddy is not created by boundary 
layer separation, as is the case for a solid sphere, but by an accumulation of vorticity 
at the rear of the bubble. An indication of this eddy may be found in figure 

The bubble size and the Weber number at the onset of path instability are nearly 
equal to the experimentally determined result of Hartunian & Sears (1957), We = 3.2. 
This is in contradiction with the suggestion of Ryskin & Leal (1984) that path 
instability will occur for We - 5. They base this on measurements of Tsuge & Hibino 
(19771, who found critical Weber numbers of about 5 for highly purified alcohols. 
The difference with Hartunian & Sears was believed by Ryskin & Leal (1984) to be 
due to surface-active impurities. However in our experiments the water is pure and 

4 ( 4  
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FIGURE 4. Bubble contour, fitted with terms up to n = 2: (a)  R = 0.64 mm; ( b )  R = 0.91 mm. 
Bubble contour, fitted with terms up to n = 8: (c) R = 0.64 mm; ( d )  R = 0.91 mm. 

still a nearly similar result is found. The reason for the difference in critical Weber 
number is that this number depends on the Morton number, as follows from Tsuge 
& Hibino (1977). They found that water, which has a lower Morton number than 
purified alcohols, will have a lower critical Weber number. Our pure water data are 
in good agreement with the empirical relation of Tsuge & Hibino (1977). The good 
agreement between our results and those of Hartunian & Sears (1957) shows that 
distilled water can be considered as nearly clean for this bubble size (not for small 
bubbles). 

Saffman (1956) found the onset of path instability to occur at R = 0.7 mm. The 
difference with our experiment is probably due to impurities in the water used by 
Saffman. From the work of Hartunian & Sears it follows that path instability occurs 
at a lower Reynolds number if the liquid contains impurities. 

In the calculations of Miksis etal. (1981), El Sawi (1974) and Benjamin (1987) a 
maximum in the We-x curve was found at W e  = 3.2. Steady bubble shapes above 
this Weber number are not possible according to these theories, hence W e  - 3.2 is 
the onset for shape instability. It is tempting to identify, as El Sawi (1974) did, the 
onset of path instability with the onset of shape instability. However, from our results 
of figure 2 it follows that the Weber number has certainly not attained its maximum. 
Therefore, the agreement between the experimentally determined Weber number for 
path instability and the theoretically determined Weber number for shape instability 
is pure coincidence, caused by theoretical overestimation of the deformation. 
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